Constitutive Relationship Modeling and Characterization of Flow Behavior under Hot Working for Fe–Cr–Ni–W–Cu–Co Super-Austenitic Stainless Steel

نویسندگان

  • Li-Chih Yang
  • Yeong-Tsuen Pan
  • Dong-Yih Lin
  • Hugo F. Lopez
چکیده

The hot deformation behavior of a Fe–22Cr–25Ni–3.5W–3Cu–1.5Co super-austenitic stainless steel was investigated using isothermal compression tests with a wide range of temperatures (1173–1373 K) and strain rates (0.1–10 s). The results showed that all the flow curves gradually turned to balanced stress state without notable peak stress characteristics during the entire deformation, which indicated that the dynamic recovery behavior played a main restoration mechanism in the steel. Modeling constitutive equations relating to the temperature, strain rate and flow stress were proposed to determine the materials constants and activation energy necessary for deformation. In order to give the precise predicted values of the flow behavior, the influence of strain was identified using polynomial functions. The relationship of flow stress, temperature and strain rate was represented by the Zener-Hollomon parameter including the Arrhenius term. The predicted results validated that the developed constitutive equations can describe high temperature flow behavior well. Furthermore, a modified Zener-Hollomon parameter map of the studied steel was developed to clarify the restoration mechanism based on the constitutive modeling data and microstructural observation. OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hot Deformation Behavior of 17-7 PH Stainless Steel

To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...

متن کامل

Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression

Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS) were investigated through hot compression tests in the temperature range of 900–1250 ◦C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature....

متن کامل

On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature

The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatu...

متن کامل

Effect of bonding time on microstructure and mechanical properties during TLP bonding of nickel-base superalloys Hastelloy C276 and Stainless Steel AISI316

Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstruct...

متن کامل

Flow Stress Modeling in a γ-γ/ Cobalt Base Superalloy by Using the Hyperbolic Sine Equation and ANN Method

The new class of wrought γ-γ/ Co-base superalloys, which are based on Co-Al-W system,  was developed by conventional hot working routes with a high volume fraction of γ/ precipitates and good mechanical properties. The aim of the present study was to predict the flow stress and hot deformation modeling of a novel γ-γ/ Co-base superalloy. The hot compression test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015